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Abstract— The Automated Machine Learning (AutoML) Sys-
tem has powered data scientists and domain experts with
its efficient model discovery capabilities and helped address
shortages of qualified data scientists. Widely used AutoML
Systems include the AutonML developed by the Auton Lab
at Carnegie Mellon University (CMU), H2O AutoML, Auto-
Sklearn, etc. Various performance evaluations have been done
on these AutoML systems. However, as AutoML systems get
updated with improved model searching ability and newly
added functionalities, we need to obtain a new map to depict the
performance of the AutoML systems. Motivated by this goal,
we conducted experiments to evaluate the performance of 4
popular AutoML systems, including AutonML, H2O AutoML,
TPOT and AutoGluon, on 177 OpenML binary-classification
tasks, using Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve as the evaluation metric.
We analyzed the experimental data from various aspects,
including the relative rankings of the AutoML systems, training-
testing performance discrepancies, relationship between the
performance of AutoML systems and dataset characteristics,
and the winning algorithms used by each AutoML system.

Index Terms— AutoML, OpenML, model selection

I. INTRODUCTION

An automated machine learning (AutoML) pipeline is a
combination of a series of steps of data preprocessing, feature
selection, model and parameter tuning, etc. Each pipeline
can be regarded as a well-defined classifier or regressor
that takes machine leaning (ML) tasks as input and yield
the predication values as the output. An AutoML system
has many such pipelines in its search space. When given a
ML task, an AutoML system will look for pipelines in its
search space, apply these pipelines to the task and rank the
performance of the pipelines according to a selected metric
(accuracy, AUC, etc). We want to know whether a designed
AutoML system can find the best pipelines given a ML task.
In this sense, an AutoML system can be regarded as a ”huge”
machine learning model. For each task given to an AutoML
system, its performance is represented by the performance of
the best pipeline it returns —- the pipeline with the highest
evaluation score on the AutoML’s leaderboard of its searched
pipelines.

Multiple open-source AutoML systems are available to use
now and they are evolving rapidly. Here is a list of a few of
them:

(1) AutonML: AutonML is an open-source AutoML sys-
tem developed by CMU Auton Lab [1] using DARPA D3M
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ecosystem, aiming at power data scientists with efficient
model discovery and advanced data analytics. AutonML
takes the training data as input, then conducts several opera-
tions including featurization, fitting and prediction, and val-
idation. AutonML outputs a leaderboard of ranked pipelines
and the pipelines on the leaderboard can be used to make
predictions on the testing data.

Fig. 1. AutonML workflow

(2) H2O AutoML: Presented by LeDell and Poirier [2],
H2O AutoML is an open-source, highly scalable, fully-
automated AutoML framework. H2O AutoML uses a com-
bination of fast random search and stacked ensembles to
achieve competitive results. H2O AutoML has an easy-to-use
interface by providing simple wrapper functions that perform
a large number of modeling tasks in order to save time for
the user.

(3) Tree-Based Pipeline Optimization Tool (TPOT): TPOT
is an open-source genetic programming-based AutoML
framework introduced by Olson and Moore [3]. The goal
of TPOT is to automate the pipeline building process by
combining tree representation of pipelines with stochastic
search algorithms. TPOT makes use of the Python-based
scikit-learn library. .

(4) AutoGluon-Tabular: AutoGluon-Tabular is an open-
source AutoML framework that utilizes the technique of
ensembling multiple models and stacking them in multiple
layers presented by Erickson [4]. The multi-layer combina-
tion of many models makes AutoGluon an AutoML that can
produce results very quickly with still good results, which
can serve the practical uses well.

In this paper, we evaluated the predication performance
of 4 AutoML systems: AutonML, H2O AutoML, TPOT and
AutoGluon on 177 OpenML binary-classification tasks. Our
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goal is to compare the relative performance of these AutoML
systems, identity whether there are relationships between the
performance of AutoML systems and certain factors such as
time budget and datasets characteristics. We also would like
to know whether the top pipelines of those AutoML systems
towards the same dataset are different in their selection of
core algorithms or not.

II. RELATED WORK

Research has been conducted on the evaluation of AutoML
methods and frameworks. Many developers of the existing
AutoML systems conducted an evaluation on their AutoML
system against other AutoML systems when they introduced
their works. For example, the inventors of H2O AutoML,
LeDell and Poirier, evaluated H2O AutoML against several
other AutoML systems on the OpenML AutoML bench-
mark, which contains 44 classification tasks, proving the
effectiveness of the H2O AutoML [2]. Olson and Moore
introduced TPOT and benchmarked TPOT’s performance
on a set of 150 supervised classification tasks and found
that it significantly outperforms a basic machine learning
algorithm in 21 tasks and has a minimal degradation only
on 4 tasks. It is all accomplished without domain knowledge
or tedious manual efforts, which shows a great promise of
GP-based AutoML systems [3]. In addition, Erickson, who
presented AutoGluon-Tabular, evaluated AutoGluon-Tabular
on a suite of 50 classification and regression tasks from
Kaggle and the OpenML AutoML Benchmark against several
other AutoML platforms, showing the robustness and high
performance of AutoGluon-Tabular. AutoGluon-Tabular was
also showed to be a time-saving AutoML system in their
experiment compared to others [4].

Comprehensive surveys have also been done on the evalu-
ation of the AutoML systems. For example, Zoller and Huber
evaluated the performance of a set of methods of algorithm
selection and hyperparametr optimization and 6 AutoML
frameworks (TPOT, Hyperopt-sklearn, Auto-Sklearn, Ran-
dom Search, ATM, H2O AutoML) on 137 OpenML datasets
[5]. Ferreira conducted empirical evaluations of 8 AutoML
tools on 12 OpenML datasets and compared the best scores
achieved by the AutoML tools with the best OpenML public
results, confirming the potential of AutoML tools to fully
automate the manual efforts on model selection and hyper-
parameter tuning [6]. Truong evaluated a selected subset of
AutoML tools on nearly 300 OpenML datasets, observing
that most AutoML tools are able to obtain reasonable results
in terms of their performance across many datasets, but there
is no ”perfect” tool that can outperform all others on a
plurality of tasks yet [7].

Tools and platforms have been introduced to facilitate the
evaluation and analysis of the AutoML frameworks. For ex-
ample, Milutinovic introduced an standardized, open-source
machine learning framework, D3M, upon which AutoML
systems can be evaluated with their strengths and weaknesses
exposed. Milutinovic also demonstrated the viability of the
D3M framework through the evaluations of 8 AutoML
systems upon it [8]. The AutonML system developed by the

Auton Lab at Carnegie Mellon University (CMU) is built
upon the D3M framework.

III. METHODS

Experiments are set up to answer the following questions:
(1) What is the performance difference of the AutoML

systems compared to each other?
(2) What is the performance difference of the AutoML

systems under different time budgets?
(3) What is the performance difference of the AutoML

systems evaluated on datasets with different characteristics?
(4) What is the main contributor to the discrepancies be-

tween the performance of AutoML systems, core algorithm
selection or other factors?

To answer the questions above, we evaluated 4 AutoML
systems: AutonML, H2O AutoML, TPOT and AutoGluon,
on 177 OpenML binary classification tasks. Datasets are se-
lected with varied dimensionalities and number of instances.
Experiments were run separately on 3 machines, tagged as
”Lab Server”, ”Desktop” and ”NYU”. All of them are 8-
core Linux Machines. First, each dataset is randomly split
into training and testing data, with 75% of the original data
used as the training data and 25% used as the testing data.
Next, the same training and testing data on each task are
passed as input to each of the AutoML systems. The metric
used to measure the performance of the AutoML systems is
AUC. Each AutoML system will look for plausible machine
learning pipelines in its search space and rank them accord-
ing to the training score in AUC. For each AutoML system,
the Top 1 pipeline on its leaderboard is used to predict on
the testing data, representing the AutoML system that finds
it. We set up 3 experimental groups with the time budget to
be 60 seconds, 600 seconds and 1200 seconds respectively.
The same evaluation process is repeated within the 3 groups
only with altered time budget.

IV. RESULTS

After running the experiments, we collected the train and
test prediction score of the AutoML systems on the 177
datasets under 3 different time budgets and analyzed the
experimental data from several aspects.

A. Performance of AutoML Systems over Time Budget

To illustrate the performance of AutoML systems over
different time budget, we compared the relative rankings of
the performance of the AutoML systems on the test data
under the time budget of 60 seconds, 600 seconds, and 1200
seconds, as shown in Figure 2. For each data point, its X-
coordinate denotes the time budget of the experiment and
its Y-coordinate is obtained by averaging the performance
rankings of its corresponding AutoML system across all
datasets, with corresponding 95% confidence intervals.

In Figure 2, AutoGluon shows to be an AutoML system
with good performance, getting the first place under the
time budget of 60 seconds and 600 seconds, and getting the
second place under the time budget of 1200 seconds. The
average rank of AutonML is rather stable across different
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Fig. 2. Average Rank of Test AUCs per AutoML

time budgets. The average rank of TPOT increases as the
time budget increases. In addtion, we can observe that
the performance of AutonnML, TPOT, and AutoGluon are
relatively close to each other, while the performance of
H2O AutoML apparently lags behind. As the time budget
increases, H2O AutoML even shows a bigger disadvantage
towards other AutoML systems.

TABLE I
RANK STATISTICS ON TEST DATA PER TIME BUDGET, AVERAGED

ACROSS N=177 DATASETS, ± STANDARD ERROR OF THE MEAN

60 seconds 600 seconds 1200 seconds
AutonML 2.44±0.15 2.48±0.15 2.45±0.15
H2O AutoML 2.74±0.15 2.84±0.15 2.88±0.15
TPOT 2.47±0.16 2.37±0.16 2.32±0.16
AutoGluon 2.35±0.16 2.31±0.15 2.34±0.15

B. Training-Testing Performance Discrepancies

To illustrate the relationship between the training and
testing performance of the AutoML systems, we make a plot
to compare the performance metric (absolute AUC score)
from the testing data versus those from the training data as
shown in Figure 3. For each data point, its X-coordinate
is obtained by averaging the training performance (based
on AUC score) of its corresponding AutoML across all
time budgets on a specific dataset. Similarly, for each data
point, its Y-coordinate is obtained by averaging the test
performance (based on AUC score) of its corresponding
AutoML across all time budgets on the same dataset. We
also include the diagonal line y = x to denote the ideal
scenario when the test prediction score is equal to the train
prediction score.

We use R-squared (R2) score as a metric to evaluate
the degree of consistency between training AUC scores and
testing AUC scores across all datasets per AutoML system.
We can observe that AutonML, H2O AutoML, TPOT and
AutoGluon achieve a R2 score of 0.76, 0.63, 0.39, and 0.54
respectively. It shows that, compared to the other AutoML
systems, AutonML has a stronger correlation between its

Fig. 3. Average AUC of testing data versus average AUC on Training data
per Dataset

test prediction score and train prediction score, which is a
desired feature. We hope that the data points can get as close
to the line y = x as possible, because we want the train
performance of the AutoML systems can serve as a good
indicator of the test performance of the AutoML systems.
Here, we can observe that TPOT have many data points that
stray far away from the line y = x, with a test performance
far worse than the train performance, which indicates that
TPOT may suffer from an over-fitting problem on some data
tasks.

C. Relationship Between AutoML System Performances and
Dataset Characteristics

We are interested in how the characteristics of the datasets,
in particular, dimensionality and number of instances, affect
the performance of the AutoML systems.

To illustrate the relationship between the performance of
the AutoML systems and the dimensionality of the datasets,
we divide the whole range of dimensionality into distinct
”buckets” using an interval of 10. Within each dimensionality
”bucket”, we average the test prediction scores over all time
budgets over all datasets for each AutoML to obtain a data
point. The results are shown in Table II and Figure 4.

Similarly, to illustrate the relationship between the perfor-
mance of the AutoML systems and the number of instances
of the datasets, we divide the whole range of number of
instances into distinct ”buckets” using an interval of 1000.
Within each ”bucket” of number of instances, we average the
test prediction scores over all time budgets over all datasets
for each AutoML to obtain a data point. The results are
shown in Table III and Figure 5.

Regarding the relationship between the performance of
AutoML systems and the dimensionality of datasets, we
can see that H2O AutoML remains in a lagging position
almost over all dimensionalities, as shown in Figure 4, which
is consistent to its state of falling behind in its average
rank across datasets over different time budgets. As the
dimensionalities increase, the average rank of AutonML
climbs up first, reaching its peak when the dimensionality
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Fig. 4. Average Rank per AutoML on Test Predictions across Datasets
within Different Dimensionality Groups

Fig. 5. Average Rank per AutoML on Test Predicitions accross Datasets
within Different Groups of Number of Instances

is within the range of [40,50), then falls down, forming
the shape of a parabola. However, we are not sure whether
this pattern can reveal certain relationships between the
performance of AutonML and the dimensionality of datasets.
We are not certain whether this pattern is representative,
either. For TPOT and AutoGluon, no obvious relationships
between their performance and the dimensionality of datasets
can be found for now.

Regarding the relationship between the performance of
AutoML systems and the number of instances, Figure 5
shows that AutoGluon has an upward trend in terms of its
relative ranking as the number of instances increases. When
the the number of instances is greater than or equal to 6000,
AutoGluon apparently prevails over other AutoML systems.
TPOT, on the other hand, achieves high relative ranks when
the dataset is small (e.g. with number of instances less than
3000), but suffers from a significant drop in terms of its
relative ranking on the 17 datasets with more than 8000
instances. No definitive conclusion has been found on the
relationship between the relative performance of AutonML
and number of instances of the dataset, yet. However, H2O

AutoML seems to have a lift in its raltive ranking from its
lagging position when the number of instances of the dataset
is greater than or equal to 6000.

TABLE II
AVERAGE RANK PER AUTOML ON TEST PREDICTIONS ACROSS N=177

DATASETS WITHIN DIFFERENT DIMENSIONALITY GROUPS

Dimensionality Number of Tasks AutonML H2O AutoML TPOT AutoGluon
[0,10) 96 2.37±0.14 2.69±0.12 2.38±0.14 2.56±0.14

[10,20) 33 2.66±0.14 2.83±0.10 2.61±0.13 1.90±0.13
[20,30) 13 2.62±0.13 3.17±0.09 1.87±0.13 2.35±0.16
[30,40) 10 2.48±0.11 3.10±0.10 2.33±0.10 2.08±0.14
[40,50) 5 2.07±0.12 3.00±0.15 2.57±0.18 2.37±0.15
[50,60) 8 2.27±0.16 3.00±0.10 2.52±0.14 2.21±0.13
[60,70) 6 2.67±0.14 2.92±0.14 2.81±0.16 1.61±0.05
[70,80) 2 3.17±0.12 2.83±0.02 2.33±0.00 1.67±0.10
[80,90) 0 NaN NaN NaN NaN
[90,100) 0 NaN NaN NaN NaN

[100,110) 2 2.83±0.12 2.83±0.02 1.33±0.05 3.00±0.10
[110,120) 1 1.00±0.00 3.67±0.00 2.00±0.00 3.33±0.00
[120,∞) 1 1.67±0.00 3.67±0.00 1.17±0.00 1.83±0.00

TABLE III
AVERAGE RANK PER AUTOML ON TEST PREDICTIONS ACROSS N=177

DATASETS WITHIN DIFFERENT GROUPS OF NUMBER OF INSTANCES

Number of Instances Number of Tasks AutonML H2O AutoML TPOT AutoGluon
[0,1000) 107 2.32±0.14 2.71±0.12 2.39±0.13 2.58±0.13

[1000,2000) 30 2.49±0.12 3.21±0.08 1.98±0.11 2.32±0.14
[2000,3000) 9 2.35±0.14 3.43±0.08 1.96±0.09 2.26±0.13
[3000,4000) 3 2.67±0.17 3.11±0.10 2.56±0.13 1.67±0.04
[4000,5000) 3 2.39±0.11 2.33±0.07 3.39±0.08 1.89±0.08
[5000,6000) 3 2.89±0.10 3.78±0.05 1.5±0.06 1.83±0.13
[6000,7000) 1 3.67±0.00 2.00±0.00 3.33±0.00 1.00±0.00
[7000,8000) 4 3.75±0.06 2.96±0.10 1.88±0.08 1.42±0.07
[8000,9000) 3 2.61±0.18 2.22±0.05 3.50±0.10 1.67±0.14
[9000,∞) 14 2.89±0.11 2.43±0.10 3.29±0.14 1.39±0.10

D. Pipeline Algorithm Exploration

1) Frequency of Winning Algorithms: In order to illustrate
the distribution of winning algorithms of each AutoML
system, we collect the core algorithm used by the top
AutoML on each data task at each time budget. When there
is a tie, we treat all the AutoML systems that can achieve the
highest test prediction score as the ”top” AutoML system.
We make bar plots to show the frequency of the first-place
algorithms for each AutoML system in Figure 6 and the
percentage frequency of the first-place algorithms for each
AutoML system in Figure 7.

We can see from the percentage frequency plots that
AutonML has very stable winning core algorithms over
varied time budgets. The same eight core algorithms have
ever made AutonML win across varied time budgets and
their percentage splits across varied time budgets are close
to each other. ”gradient boosting” is the algorithm that helps
AutonML win most, taking a share between 20% and 30%
of the winning algorithms of AutonML across all time
budgets. There are several other noticeable points as well.
For example, for H2O AutoML, it starts with exploring a
few algorithms when the time budget is limited, including
XGBoost, DeepLearning, and Gradient Boosting Machine
(GBM). As the time budget increases, H2O AutoML explores
more types of algorithms and uses them to win. However,
as the time budget continues to increase, H2O AutoML
returns to its original choice of algorithms. For TPOT, we
can see that it is the AutoML system that has the largest
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number of distinct winning algorithms (over 10 distinct
winning algorithms under any time budget), which suggests
that TPOT may try a large number of different algorithms,
and some of the algorithms may not be in use by other
AutoML systems. This diversity may provide TPOT an edge
in its searching of good algorithms and pipelines. Actually,
TPOT turns out to be a frequent winning AutoML system in
this experiment. Together with AutoGluon, TPOT never falls
out of the first two places in terms of winning frequency,
and they have significantly more winnings than AutonML
and H2O AutoML. For AutoGluon, we can observe that
its winning algorithms are very stable across varied time
budgets. ”WeightedEnsemble L2” and ”CatBoost” are the
Top 2 most frequent winning algorithms of AutoGluon and
each of their shares is significantly larger than the share
of any other winning algorithm. ”WeightedEnsemble L2” is
the most frequent winning algorithm under any time budget
and its edge over ”CatBoost” in frequency is significant,
which is consistent to the fact that AutoGluon uses the
technique of ensembling several other models to produce its
own prediction models. Together with TPOT, AutoGluon is a
frequent winning AutoML system over AutonML and H2O
AutoML.

TABLE IV
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 60 SECONDS)

AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 14 / 24.14% 0 8 / 12.31% 0 22 / 9.61%
extra trees 13 / 22.41% 1 / 2.50% 7 / 10.77% 0 21 / 9.17%
ada boost 9 / 15.52% 0 0 0 9 / 3.93%
sgd 0 0 0 0 0
bagging 5 / 8.62% 0 0 0 5 / 2.18%
mlp 5 / 8.62% 0 7 / 10.77% 0 12 / 5.24%
random forest 4 / 6.90% 0 6 / 9.23% 0 10 / 4.37%
XGBoost 4 / 6.90% 13 / 32.50% 10 / 15.38% 1 / 1.52% 28 / 12.23%
logistic regression 4 / 6.90% 0 3 / 4.62% 0 7 / 3.06%
DeepLearning 0 8 / 20.00% 2 / 3.08% 2 / 3.04% 12 / 5.24%
GBM 0 14 / 35.00% 8 / 12.31% 0 22 / 9.61%
GLM 0 1 / 2.50% 0 0 1 / 0.44%
DRF 0 2 / 5.00% 0 0 2 / 0.87%
GaussianNB 0 1 / 2.50% 3 / 4.62 % 0 4 / 1.75%
MultinomialNB 0 0 2 / 3.08% 0 2 / 0.87%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.54% 0 1 / 0.44%
DecisionTreeClassifier 0 0 2 / 3.08% 0 2 / 0.87%
WeightedEnsemble L2 0 0 0 43 / 65.15% 43 / 18.78%
LightGBMLarge 0 0 0 0 0%
CatBoost 0 0 0 17 / 25.76% 17 / 7.42%
LightGBM 0 0 0 1 / 1.52% 1 / 0.44%
KNeighborsDist 0 0 6 / 9.23% 0 6 / 2.62%
LightGBMXT 0 0 0 2 / 3.03% 2 / 0.87%
ToTal 58 / 100.00% 40 / 100.00% 65 / 100.00% 66 / 100.00% 229 / 100.00%

TABLE V
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 600 SECONDS)

AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 15 / 26.79% 4 / 9.09% 14 / 20.00% 0 33 / 13.69%
extra trees 9 / 16.07% 1 / 2.27% 21 / 30.00% 0 31 / 12.86%
ada boost 5 / 8.93% 0 0 0 5 / 2.07%
sgd 0 0 0 0 0
bagging 5 / 8.93% 0 0 0 5 / 2.07%
mlp 6 / 10.71% 0 10 / 14.29% 0 16 / 6.64%
random forest 6 / 10.71% 0 4 / 5.71% 0 10 / 4.15%
XGBoost 3 / 5.36% 5 / 11.36% 0 2 / 2.82% 10 / 4.15%
logistic regression 7 / 12.5% 1 / 2.27% 1 / 1.43% 0 9 / 3.73%
DeepLearning 0 9 / 20.45% 0 4 / 5.63% 13 / 5.39%
GBM 0 22 / 50.00% 0 0 22 / 9.13%
GLM 0 0 0 0 0
DRF 0 0 0 0 0
GaussianNB 0 0 3 / 4.29% 0 3 / 1.24%
MultinomialNB 0 0 1 / 1.43% 0 1 / 0.41%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.43% 0 1 / 0.41%
DecisionTreeClassifier 0 1 / 2.27% 3 / 4.29% 0 4 / 1.66%
WeightedEnsemble L2 0 0 0 43 / 60.56% 43/ 17.84%
LightGBMLarge 0 0 0 0 0
CatBoost 0 0 0 20 / 28.17% 20 / 8.30%
LightGBM 0 0 0 0 0
KNeighborsDist 0 1 / 2.27% 12 / 17.14% 0 13 / 5.39%
LightGBMXT 0 0 0 2 / 2.82% 2 / 0.83%
Total 56 / 100.00% 44 / 100.00% 70 / 100.00% 71 / 100.00% 241 / 100.00%

TABLE VI
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 1200 SECONDS)

AutoML AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 13 / 22.41% 0 17 / 23.29% 0 30 / 12.66%
extra trees 11 / 18.97% 0 20 / 27.40% 0 31 / 13.08%
ada boost 8 / 13.79% 0 0 0 8 / 3.38%
sgd 0 0 0 0 0
bagging 5 / 8.62% 0 0 0 5 / 2.11%
mlp 6 / 10.34% 0 11 / 15.07% 0 17 / 7.17%
random forest 4 / 6.90% 0 6 / 8.22% 0 10 / 4.22%
XGBoost 2 / 3.45% 11 / 26.83% 0 2 / 3.08% 15 / 6.33%
logistic regression 9 / 15.52% 0 1 / 1.37% 0 10 / 4.22%
DeepLearning 0 10 / 24.39% 0 4 / 6.15% 14 / 5.91%
GBM 0 20 / 48.78% 0 0 20 / 8.44%
GLM 0 0 0 0 0
DRF 0 0 0 0 0
GaussianNB 0 0 3 / 4.11% 0 3 / 1.27%
MultinomialNB 0 0 1 / 1.37% 0 1 / 0.42%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.37% 0 1 / 0.42%
DecisionTreeClassifier 0 0 3 / 4.11% 0 3 / 1.27%
WeightedEnsemble L2 0 0 0 37 / 56.92% 18 / 15.61%
LightGBMLarge 0 0 0 0 0
CatBoost 0 0 0 19 / 29.23% 19 / 8.02%
LightGBM 0 0 0 0 0
KNeighborsDist 0 0 10 / 13.70% 0 10 / 4.22%
LightGBMXT 0 0 0 3 / 4.62% 3 / 1.27%
Total 58 / 100.00% 41 / 100.00% 73 / 100.00% 65 / 100.00% 237 / 100.00%

2) Performance Discrepancies versus Core Algorithm
Discrepancies: In order to explore whether the performance
discrepancies is contributed by the difference in the selection
of the core algorithm or not, we pick up one AutoML system,
AutonML, into study in particular. We focus on the data
tasks that AutonML did not win. In order to investigate the
algorithm distribution on these tasks, we make heat maps
of the algorithms used by the winning AutoML versus the
algorithms used by AutonML. If there is a tie over the
Top 1 AutoML system, we take all of them and their core
algorithms as well into consideration. The result is shown in
Figure 8. The count in each grid denotes the frequencies that
AutonML did not get the first place with its corresponding
algorithm and another AutoML system got the first place
with its corresponding algorithm.

Several observations are as below. There is a prominent
grid: ”WeightedEnsemble L2”-”gradient bossting”. It has a
value of 16, 15, 12 under the time budget of 60 seconds, 600
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Fig. 6. Frequency of First Place Algorithm of each AutoML Fig. 7. Percentage Frequency of First Place Algorithm of each AutoML
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seconds, and 1200 seconds respectively, which means that
there are 16, 15, 12 times when AutonML did not win using
the algorithm of ”gradient bossting” while another AutoML
system won using the algorithm of ”WeightedEnsemble L2”
under the time budget of 60 seconds, 600 seconds and
1200 seconds respectively. It shows that AutonML has a
tendency to utilize the ”gradient boosting” algorithm, but
this individual algorithm often failed to beat the ensemble
technique. In addition, ”WeightedEnsemble L2” also counts
for many times of AutonML not getting the first place in
total, which are 43, 43 and 37 times respectively under the
time budget of 60 seconds, 600 seconds and 1200 seconds.
Several other major algorithms that tend to evade AutonML
as winning algorithms include ”DeepLearning”, ”GBM”,
”extra trees” and ”gradient boosting”. We noticed that under
the time budget of 600 seconds and 1200 seconds, there are
2 additional prominent grids: ”extra trees”-”extra trees”, and
”gradient boosting”-”gradient boosting”. The value of grid
”extra trees”-”extra trees” are 7 and 5 respectively under the
time budget of 600 seconds and 1200 seconds. The value
of grid ”gradient boosting”-”gradient boosting” are 4 and
5 respectively under the time budget of 600 seconds and
1200 seconds. It shows that other AutoML systems may beat
AutonML by factors other than pipeline core algorithm se-
lection, such as data processing or model parameter selection
when the time budget is large.

V. CONCLUSION

We evaluated the performance of 4 AutoML systems on
177 OpenML binary-classification tasks, using AUC as the
evaluation metric. We analyzed the experimental data from
several aspects, including the relative rankings of the Au-
toML systems, training-testing performance discrepancies,
relationship between the performance of the AutoML sys-
tems and the dataset characteristics, and the core algorithms
used by each AutoML system that can help it win. We show
that AutoGluon achieved the highest average rank among the
4 AutoML systems being evaluated under the time budget
of 60 seconds and 600 seconds, while TPOT achieved the
highest average rank under the time budget of 1200 seconds.
We find that AutonML has the strongest correlation between
its test prediction score and train prediction score, which
indicates better generalization of the predictive models. No
definitive conclusion has been found regarding the rela-
tionship between the performance of the AutoML systems
and dimensionality of the datasets yet. However, there may
exist certain relationships between the performance of the
AutoML systems and number of instances of the datasets.
For example, according to the experimental results on the
177 datasets, the relative performance of AutoGluon goes in
an upward trend as the number of instances of the dataset
increases, while TPOT generally performs relatively better
on smaller datasets than larger ones. Lastly, we showed the
absolute frequency and the percentage frequency of winning
algorithms of each AutoML system. In addition, we used
AutonML as an example to study how algorithm selection
can contribute to performance discrepancies. We identify

Fig. 8. Heat Maps of Top AutoML Core Algorithm versus AutonML Core
Algorithm when AutonML did not Get the First Place 261



several algorithms that AutonML tend to miss but grabbed
by other AutoML systems to get the first place, such as
the ensemble technique. We showed that both the pipeline
algorithm selection and other factors can contribute to the
performance discrepancies among the AutoML systems.

However, our research still has some limitations. For ex-
ample, our selection of data tasks contains too many datasets
with small dimensionalities and number of instances and
only a few datasets with large dimensionalities or number of
instances. Therefore, the performance lift of AutoGluon over
large datasets may not be representative. In the future, we
hope to incorporate more datasets with large dimensionality
or number of instances into our evaluation process. In addi-
tion, we solely focus on OpenML binary-classification tasks
for now. In the future, we hope to expand our experiment
to multi-class classification tasks and regression tasks to see
how the AutoML systems behave in these types of tasks. We
also like to test AutoML systems on datasets from sources
other than OpenML and observe their behaviors over these
tasks.

VI. APPENDIX

Please See Table VII attached for summary of average
train prediction scores and test prediction scores of the Au-
toML systems across time budgets. See Table VIII attached
for a description of data tasks that the 4 AutoML systems
have been evaluated upon.
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TABLE VII
AVERAGED TRAIN PREDICTION SCORE AND TEST PREDICTION SCORE OF THE AUTOML SYSTEMS ACROSS TIME BUDGETS

OpenML ID AutonML Train AutonML Test H2O Train H2O Test TPOT Train TPOT Test AutoGluon Train AutoGluon Test
0 1013 0.7254 0.4167 0.7647 0.6919 0.9035 0.4621 0.9 0.505
1 823 0.9984 0.9983 0.9999 0.9986 0.9662 0.967 0.9993 0.9987
2 799 0.9634 0.9647 0.9965 0.9654 0.9903 0.9617 0.9735 0.9701
3 1004 1.0 1.0 0.9998 1.0 1.0 0.9992 1.0 1.0
4 842 0.7298 0.88 0.7618 0.68 0.9467 0.8133 0.85 0.8
5 1006 0.9131 0.9662 0.9618 0.9255 0.9943 0.8407 1.0 0.9676
6 737 0.9255 0.9176 0.9548 0.9163 0.9845 0.9333 0.9279 0.9307
7 740 0.9579 0.9786 0.9954 0.9786 0.9984 0.982 0.9751 0.9812
8 1220 0.6927 0.7053 0.7387 0.7062 0.6733 0.6709 0.7055 0.7159
9 757 0.8819 0.8484 0.981 0.8342 0.9997 0.846 0.974 0.8308
10 792 0.9743 0.9858 0.9945 0.9792 0.9974 0.9888 0.9977 0.9841
11 1011 0.9862 0.9846 0.9997 0.9861 0.9963 0.9799 1.0 0.9801
12 803 0.9774 0.982 0.9988 0.9812 0.9922 0.9836 0.979 0.9848
13 13 0.6388 0.6707 0.9321 0.6651 0.7727 0.7434 0.8602 0.7536
14 15 0.9915 0.9977 0.9933 0.9975 0.9967 0.9977 1.0 0.9981
15 37 0.8203 0.8548 0.836 0.8367 0.8941 0.8619 0.8368 0.8747
16 43 0.6639 0.7668 0.7119 0.6966 0.718 0.7412 0.7966 0.7632
17 50 0.9967 0.9997 1.0 1.0 1.0 1.0 1.0 1.0
18 333 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
19 334 0.9998 1.0 1.0 0.9972 1.0 1.0 1.0 1.0
20 335 0.9934 0.9877 0.9987 0.9755 0.9998 0.9936 0.9959 0.9812
21 346 0.7182 0.8 0.6404 0.6222 0.797 0.8333 0.7333 0.8667
22 444 0.7301 0.863 0.9161 0.8296 0.8863 0.9346 0.8889 0.8704
23 448 0.9378 0.6625 0.9986 0.7392 0.9854 0.6775 1.0 0.59
24 450 0.9951 0.9935 0.9678 0.9738 1.0 0.9869 1.0 0.9803
25 451 0.9914 0.9893 0.9965 0.9943 0.9961 0.9979 0.9978 0.994
26 464 0.9221 0.9645 0.9258 0.9655 0.9666 0.9746 0.9583 0.9746
27 472 0.845 0.775 0.9582 0.7597 0.8792 0.7833 1.0 0.8083
28 476 0.9697 1.0 0.996 0.9889 0.9106 0.9 1.0 0.9667
29 479 0.8833 0.9296 0.9853 0.9 0.9455 0.9222 0.9091 0.9333
30 949 0.8371 0.734 0.8098 0.7099 0.967 0.7974 0.8531 0.7814
31 1037 0.8994 0.9108 0.9439 0.9101 0.9161 0.9071 0.9177 0.9095
32 1566 0.8232 0.9103 0.9984 0.9976 1.0 0.9978 0.9989 0.987
33 744 0.9282 0.9465 0.9989 0.9674 1.0 0.9571 0.93 0.93
34 1558 0.9065 0.8795 0.9966 0.8801 0.959 0.8831 0.9181 0.8934
35 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
36 23499 0.7153 0.6951 0.7968 0.6668 0.8403 0.6638 0.9853 0.6873
37 1167 0.6303 0.6833 0.7449 0.649 0.6531 0.6822 0.6182 0.6829
38 1511 0.9627 0.9673 0.9826 0.9551 0.9895 0.9563 0.9778 0.9704
39 1524 0.9155 0.9289 0.9784 0.8958 0.9419 0.9449 0.9415 0.9067
40 890 0.8823 0.9013 0.8869 0.7632 1.0 0.9013 1.0 0.8092
41 1455 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
42 1473 0.5644 0.5298 0.925 0.6825 0.8971 0.5595 0.8846 0.5833
43 1463 0.9202 0.7833 0.969 0.8122 0.9718 0.6366 0.9773 0.77
44 1495 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
45 40714 0.1806 0.1562 0.5648 0.3542 0.9722 1.0 0.6667 0.8125
46 41538 0.5032 0.6824 0.7632 0.4881 0.9816 0.5528 0.5189 0.5702
47 42638 0.8712 0.835 0.9318 0.8269 0.9672 0.8385 0.9233 0.8436
48 40669 1.0 1.0 0.9994 1.0 1.0 1.0 1.0 1.0
49 40681 1.0 1.0 0.9996 0.9961 1.0 1.0 1.0 1.0
50 40690 0.9999 1.0 0.9999 0.9979 1.0 1.0 1.0 0.9993
51 724 0.9229 0.9325 0.9965 0.8941 0.9965 0.9396 0.9694 0.9502
52 731 0.8201 0.6806 0.802 0.6829 0.8892 0.6875 0.9643 0.6806
53 729 0.9308 1.0 0.9962 0.9762 1.0 1.0 1.0 1.0
54 730 0.9847 0.9934 0.9998 0.9626 0.9997 0.9926 1.0 0.9778
55 726 0.8587 0.8929 0.9393 0.8052 0.9995 0.9416 0.9444 0.8279
56 767 0.9533 0.9372 0.988 0.9048 0.9699 0.9138 0.9984 0.9369
57 764 0.9157 0.9609 0.9909 0.9112 0.9816 0.9316 0.9604 0.9276
58 765 0.9783 0.931 0.9885 0.9439 0.9925 0.9569 0.9344 0.9057
59 790 0.9601 0.8958 0.994 0.9028 0.994 0.9306 1.0 0.9167
60 795 0.5192 0.5002 0.7443 0.5366 0.6927 0.4993 0.632 0.4597
61 865 0.6932 0.3542 0.6836 0.2917 0.8164 0.3542 0.9286 0.3958
62 864 0.7268 0.821 0.8446 0.8766 0.9372 0.3457 0.85 0.7037
63 867 0.8188 0.858 0.9516 0.9115 0.9442 0.8786 0.8906 0.821
64 899 0.9446 0.9077 0.9163 0.8385 0.9807 0.8692 1.0 0.8923
65 905 0.7778 1.0 0.8768 0.8571 0.9555 0.9841 0.875 0.9524
66 900 0.5454 0.516 0.8533 0.5537 0.9411 0.4286 0.6742 0.476
67 942 0.7135 0.5119 0.6364 0.4444 0.8523 0.4683 0.875 0.5476
68 944 0.8297 0.7981 0.9898 0.7691 0.8988 0.7883 0.899 0.7963
69 945 0.8858 0.8846 0.9375 0.7778 0.9979 0.8632 1.0 0.8077
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OpenML ID AutonML Train AutonML Test H2O Train H2O Test TPOT Train TPOT Test AutoGluon Train AutoGluon Test
70 946 0.6668 0.4583 0.9128 0.468 0.9324 0.5639 0.4694 0.4625
71 967 0.9763 0.9704 1.0 0.969 0.9999 0.9762 0.9748 0.9733
72 961 0.8487 0.8457 0.8514 0.8066 0.9693 0.8719 0.8489 0.8634
73 968 0.9525 0.8447 0.9495 0.8724 0.9702 0.8773 0.9758 0.8835
74 960 0.3239 0.6029 0.6867 0.4788 0.7291 0.4396 0.625 0.6324
75 996 0.9032 0.9276 0.9999 0.8947 0.999 0.8975 0.95 0.9227
76 997 0.9988 1.0 0.9985 0.9961 1.0 0.9994 0.9995 0.9984
77 1025 0.9703 0.9413 0.9885 0.9575 0.8562 0.8056 0.9836 0.9174
78 739 0.7202 0.7167 0.8919 0.6556 0.9943 0.5389 0.8 0.8167
79 733 0.9835 0.9889 0.9974 0.9947 0.9917 0.9894 1.0 0.9884
80 784 0.8509 0.8881 0.9938 0.8928 0.9749 0.8666 0.9636 0.8462
81 777 0.9065 0.9444 0.9779 0.9259 0.9773 0.8704 0.9167 0.8889
82 782 0.9861 1.0 0.998 1.0 0.9993 1.0 1.0 1.0
83 875 0.9435 1.0 0.9942 0.9854 0.9948 0.9941 1.0 0.8669
84 916 0.9113 0.7564 0.8914 0.7233 1.0 0.8354 0.9815 0.7821
85 895 0.9197 0.9473 0.9655 0.939 0.9723 0.9275 0.9451 0.9395
86 974 0.9317 0.9925 0.9579 0.9883 0.9641 0.9908 0.9394 0.94
87 754 0.9538 0.92 0.8353 0.87 0.9939 0.9444 1.0 0.8733
88 811 0.9823 0.9315 0.9964 0.9353 0.9971 0.8964 1.0 0.9522
89 747 0.9983 0.9653 0.9962 0.9769 0.9998 0.9816 1.0 0.9918
90 714 0.6244 0.377 0.6515 0.5192 0.7269 0.4584 0.7024 0.5397
91 955 0.7779 0.9 0.7088 0.7949 0.9993 0.8082 0.8917 0.7508
92 748 0.8248 0.9106 0.9975 0.8646 0.8386 0.8348 0.881 0.7545
93 719 0.8019 0.6957 0.9956 0.5749 1.0 0.6981 0.8556 0.558
94 1075 0.7375 0.8125 0.9088 0.5417 0.8935 0.2708 0.7778 0.2812
95 814 0.9262 0.9408 0.9998 0.9349 0.9995 0.9502 0.9744 0.9359
96 776 0.9377 0.8976 0.9999 0.9231 1.0 0.9526 0.9111 0.9127
97 911 0.9439 0.9628 1.0 0.9449 0.9997 0.9619 0.9972 0.951
98 886 0.6847 0.6871 0.9899 0.6272 0.9873 0.6494 0.7956 0.6812
99 796 0.9995 1.0 0.9976 0.9989 1.0 1.0 1.0 1.0
100 774 0.5631 0.5652 0.6265 0.5311 0.5243 0.4977 0.5797 0.5251
101 893 0.641 0.9167 0.6116 0.6556 0.884 0.5722 0.7667 0.8778
102 906 0.5293 0.4084 0.9256 0.4671 0.9992 0.433 0.5787 0.5392
103 884 0.9595 0.9262 0.9959 0.9373 0.9998 0.9624 0.9502 0.9654
104 894 0.9931 1.0 0.9989 1.0 0.9948 1.0 1.0 1.0
105 770 0.9995 1.0 1.0 1.0 1.0 1.0 1.0 1.0
106 870 0.9634 0.9612 0.9993 0.9438 0.9953 0.9731 0.9879 0.9449
107 749 0.9652 0.9463 0.9962 0.9764 0.9979 0.9858 0.9915 0.9799
108 1014 0.5554 0.5447 0.7281 0.4906 0.6218 0.4956 0.6293 0.4792
109 947 0.9042 0.869 0.9998 0.9373 0.9892 0.9141 0.9095 0.8142
110 841 0.9938 0.9996 0.9998 0.9987 0.9998 0.9995 0.998 0.9992
111 1005 0.8954 0.9041 0.9984 0.8602 1.0 0.9243 0.9307 0.8612
112 950 0.9252 0.9988 0.9355 0.915 0.9997 0.9946 1.0 0.9975
113 907 0.5073 0.4803 0.8244 0.5547 0.639 0.4565 0.6433 0.5821
114 874 1.0 0.9545 1.0 1.0 1.0 0.9545 1.0 1.0
115 750 0.6023 0.7786 0.7227 0.6032 1.0 0.6641 0.7037 0.6636
116 848 0.898 0.7619 1.0 0.7381 1.0 0.4444 1.0 0.6429
117 1049 0.9381 0.9435 0.9944 0.9332 0.9939 0.9381 0.9676 0.951
118 847 0.943 0.9336 0.9661 0.9363 0.9684 0.9338 0.9621 0.9387
119 316 0.8581 0.9503 0.9922 0.8662 0.9589 0.9269 0.9782 0.903
120 910 0.9734 0.981 0.9988 0.9789 0.9998 0.9819 0.9834 0.9809
121 904 0.9394 0.9653 0.9998 0.9608 0.9983 0.9558 0.9586 0.9628
122 930 0.8049 0.8502 0.9014 0.8346 0.9572 0.8553 0.8582 0.8546
123 958 1.0 0.9998 1.0 0.9982 1.0 0.9997 1.0 0.9999
124 1019 0.9998 0.9998 0.9998 0.9991 1.0 0.998 1.0 0.9997
125 723 0.9558 0.9662 0.9992 0.965 1.0 0.9778 0.9703 0.9602
126 734 0.9562 0.9559 0.9913 0.9593 0.9561 0.9529 0.9596 0.9599
127 4154 0.9586 0.8352 0.9971 0.7659 0.9996 0.8235 1.0 0.6971
128 1056 0.9387 0.8858 0.9849 0.8327 0.9985 0.8941 0.9946 0.9173
129 1002 0.8469 0.863 0.9027 0.8672 0.9141 0.8745 0.8622 0.8754
130 845 0.9522 0.9437 0.9972 0.9434 0.9994 0.9624 0.9753 0.9582
131 1020 0.9979 0.9994 0.9992 0.9981 1.0 0.9998 1.0 0.9997
132 971 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
133 44 0.9851 0.9886 0.9992 0.989 0.9978 0.9869 0.9897 0.9889
134 979 0.9599 0.9654 0.9992 0.958 1.0 0.9667 0.9758 0.965
135 718 0.961 0.9309 0.9993 0.9396 0.9979 0.9631 0.9895 0.9379
136 715 0.9707 0.9672 0.9999 0.9698 0.999 0.9758 0.9875 0.9745
137 761 0.9817 0.9821 0.996 0.9828 0.9985 0.9829 0.986 0.9854
138 1453 0.8137 0.8574 0.9871 0.7733 0.9878 0.858 0.8369 0.8397
139 821 0.948 0.9536 0.9861 0.9576 0.9339 0.9336 0.9599 0.9608
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OpenML ID AutonML Train AutonML Test H2O Train H2O Test TPOT Train TPOT Test AutoGluon Train AutoGluon Test
140 31 0.7937 0.7683 0.9925 0.7483 0.9871 0.7363 0.8413 0.7633
141 1504 1.0 1.0 1.0 0.9998 1.0 1.0 1.0 1.0
142 849 0.9511 0.9523 0.9992 0.944 0.995 0.9619 0.9657 0.9596
143 1068 0.8455 0.897 0.871 0.8038 0.9959 0.9118 0.87 0.8849
144 1022 0.999 0.9983 0.9999 0.9973 1.0 0.9998 1.0 0.9997
145 981 0.9484 0.9498 0.9891 0.9581 0.9567 0.9423 0.9637 0.9603
146 1487 0.9165 0.919 0.99 0.9348 1.0 0.9387 0.913 0.9444
147 1471 0.9789 0.988 0.9998 0.9934 1.0 0.9956 0.998 0.9981
148 995 0.9986 0.9998 0.9984 0.998 1.0 0.9994 1.0 0.9978
149 143 0.9951 0.9956 0.9966 0.9964 0.9943 0.9945 0.9972 0.9964
150 3 0.9985 0.9995 1.0 0.9998 0.9999 0.9996 1.0 0.9999
151 1496 0.9961 0.9965 1.0 0.9967 0.9978 0.9977 0.9943 0.9968
152 1461 0.9241 0.9257 0.9672 0.9326 0.9287 0.901 0.9404 0.9366
153 751 0.9629 0.9658 0.9984 0.9458 0.9965 0.9676 0.9822 0.9532
154 1067 0.8164 0.8264 0.9642 0.8085 0.9867 0.8427 0.7992 0.826
155 722 0.9985 0.999 1.0 0.9995 0.9977 0.9936 0.9994 0.9997
156 802 0.8737 0.8971 0.999 0.9143 0.9999 0.9117 0.8875 0.9228
157 1547 0.7126 0.698 0.7162 0.6886 0.8978 0.6772 0.6661 0.7274
158 913 0.9683 0.9872 1.0 0.9859 1.0 0.9888 0.9963 0.9905
159 976 0.9994 0.9998 0.9996 0.9993 1.0 0.9999 0.9997 0.9999
160 953 0.9936 0.9915 0.9999 0.9892 1.0 0.9896 0.9922 0.9908
161 993 0.993 0.9886 0.9998 0.99 0.9979 0.9897 0.9941 0.9902
162 752 0.9571 0.9566 0.9987 0.9602 0.9683 0.9496 0.9678 0.9691
163 1018 0.8942 0.9003 0.9079 0.8999 0.9496 0.8982 0.9015 0.8989
164 1050 0.8425 0.8559 0.9725 0.8293 0.977 0.8485 0.85 0.8354
165 797 0.9586 0.9657 0.9996 0.9571 1.0 0.9646 0.9779 0.9663
166 806 0.9589 0.9642 0.9999 0.9577 1.0 0.9678 0.9565 0.9563
167 866 0.9631 0.9759 0.9985 0.9663 0.9996 0.9784 0.9671 0.9657
168 837 0.9703 0.9779 1.0 0.9785 1.0 0.9819 0.984 0.9804
169 897 0.9996 0.9994 1.0 0.998 1.0 0.9996 1.0 0.9987
170 903 0.978 0.967 0.9995 0.9632 0.9998 0.9764 0.9767 0.9609
171 1494 0.9233 0.9347 0.9887 0.9172 0.9936 0.9346 0.9306 0.9309
172 917 0.9646 0.9749 0.9999 0.9782 0.9989 0.9755 0.982 0.9785
173 983 0.7576 0.7871 0.9074 0.7754 0.8441 0.7892 0.7925 0.7934
174 977 0.9998 0.9998 1.0 0.9999 0.9999 0.9998 1.0 1.0
175 1021 0.9909 0.9921 0.9966 0.9925 0.9988 0.9943 0.9942 0.9956
176 980 0.9983 0.9997 0.9999 0.9986 1.0 0.9999 1.0 0.9999
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TABLE VIII
DATA TASKS DESCRIPTION

OpenML ID Computing Machine No. of Features No. of Instances
0 1013 Lab Server 3 138
1 823 Lab Server 9 20640
2 799 Lab Server 6 1000
3 1004 Lab Server 61 600
4 842 Lab Server 11 60
5 1006 Lab Server 19 148
6 737 Lab Server 7 3107
7 740 Lab Server 11 1000
8 1220 Lab Server 10 39948
9 757 Lab Server 22 528
10 792 Lab Server 6 500
11 1011 Lab Server 8 336
12 803 Lab Server 6 7129
13 13 Desktop 10 286
14 15 Desktop 10 699
15 37 Desktop 9 768
16 43 Desktop 4 306
17 50 Desktop 10 958
18 333 Desktop 7 556
19 334 Desktop 7 601
20 335 Desktop 7 554
21 346 Desktop 5 50
22 444 Desktop 4 132
23 448 Desktop 4 120
24 450 Desktop 5 264
25 451 Desktop 6 500
26 464 Desktop 3 250
27 472 Desktop 4 87
28 476 Desktop 6 50
29 479 Desktop 10 92
30 949 Desktop 5 559
31 1037 Desktop 15 4562
32 1566 Desktop 101 1212
33 744 Desktop 6 250
34 1558 Desktop 17 4521
35 1024 Desktop 35 2796
36 23499 Desktop 10 277
37 1167 Desktop 9 320
38 1511 Desktop 9 440
39 1524 Desktop 7 310
40 890 Desktop 8 108
41 1455 Desktop 7 120
42 1473 Desktop 10 100
43 1463 Desktop 6 100
44 1495 Desktop 7 250
45 40714 Desktop 6 32
46 41538 Desktop 7 246
47 42638 Desktop 8 891
48 40669 Desktop 7 160
49 40681 Desktop 7 128
50 40690 Desktop 10 512
51 724 Desktop 4 468
52 731 Desktop 5 96
53 729 Desktop 4 44
54 730 Desktop 6 250
55 726 Desktop 6 100
56 767 Desktop 4 475
57 764 Desktop 4 450
58 765 Desktop 4 475
59 790 Desktop 3 55

266



OpenML ID Computing Machine No. of Features No. of Instances
60 795 Desktop 4 662
61 865 Desktop 3 100
62 864 Desktop 8 60
63 867 Desktop 3 130
64 899 Desktop 6 92
65 905 Desktop 3 39
66 900 Desktop 7 400
67 942 Desktop 4 50
68 944 Desktop 10 130
69 945 Desktop 7 76
70 946 Desktop 3 88
71 967 Desktop 9 406
72 961 Desktop 8 285
73 968 Desktop 4 365
74 960 Desktop 9 90
75 996 Desktop 10 214
76 997 Desktop 5 625
77 1025 Desktop 6 400
78 739 Desktop 8 62
79 733 Desktop 7 209
80 784 Desktop 4 140
81 777 Desktop 8 47
82 782 Desktop 3 120
83 875 Desktop 4 100
84 916 Desktop 6 100
85 895 Desktop 3 222
86 974 Desktop 5 132
87 754 Desktop 6 100
88 811 Desktop 3 264
89 747 Desktop 5 167
90 714 Desktop 5 125
91 955 Desktop 6 151
92 748 Desktop 6 163
93 719 Desktop 8 137
94 1075 Desktop 9 130
95 814 Desktop 3 468
96 776 Desktop 6 250
97 911 Desktop 6 250
98 886 Desktop 8 500
99 796 Desktop 8 209

100 774 Desktop 4 662
101 893 Desktop 6 73
102 906 Desktop 8 400
103 884 Desktop 6 500
104 894 Desktop 6 66
105 770 Desktop 7 625
106 870 Desktop 6 500
107 749 Desktop 6 500
108 1014 Desktop 5 797
109 947 Desktop 5 559
110 841 Desktop 10 950
111 1005 Desktop 10 214
112 950 Desktop 5 559
113 907 Desktop 8 400
114 874 Desktop 6 50
115 750 Desktop 8 500
116 848 Desktop 6 38
117 1049 NYU 38 1458
118 847 NYU 15 6574
119 316 NYU 117 2417
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OpenML ID Computing Machine No. of Features No. of Instances
120 910 NYU 11 1000
121 904 NYU 51 1000
122 930 NYU 34 1302
123 958 NYU 20 2310
124 1019 NYU 17 10992
125 723 NYU 26 1000
126 734 NYU 41 13750
127 4154 NYU 31 14240
128 1056 NYU 39 9466
129 1002 NYU 56 7485
130 845 NYU 11 1000
131 1020 NYU 65 2000
132 971 NYU 77 2000
133 44 NYU 58 4601
134 979 NYU 41 5000
135 718 NYU 101 1000
136 715 NYU 26 1000
137 761 NYU 22 8192
138 1453 NYU 38 1077
139 821 NYU 17 22784
140 31 NYU 21 1000
141 1504 NYU 34 1941
142 849 NYU 26 1000
143 1068 NYU 22 1109
144 1022 NYU 241 2000
145 981 NYU 69 10108
146 1487 NYU 73 2534
147 1471 NYU 15 14980
148 995 NYU 48 2000
149 143 NYU 17 131072
150 3 NYU 37 3196
151 1496 NYU 21 7400
152 1461 NYU 17 45211
153 751 NYU 11 1000
154 1067 NYU 22 2109
155 722 NYU 49 15000
156 802 NYU 19 1945
157 1547 NYU 21 1000
158 913 NYU 11 1000
159 976 NYU 15 9961
160 953 NYU 61 3190
161 993 NYU 61 7019
162 752 NYU 33 8192
163 1018 NYU 57 8844
164 1050 NYU 38 1563
165 797 NYU 51 1000
166 806 NYU 51 1000
167 866 NYU 51 1000
168 837 NYU 51 1000
169 897 NYU 16 1161
170 903 NYU 26 1000
171 1494 NYU 42 1055
172 917 NYU 26 1000
173 983 NYU 10 1473
174 977 NYU 17 20000
175 1021 NYU 11 5473
176 980 NYU 65 5620
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